Áp dụng BĐT Cauchy cho 2 số không âm, ta có:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{b+c}{4}+\frac{a+b}{4}+\frac{c+a}{4}\)
\(\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}+2\sqrt{\frac{b^2}{c+a}.\frac{c+a}{4}}+2\sqrt{\frac{c^2}{a+b}.\frac{a+b}{4}}\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{2\left(a+b+c\right)}{4}\ge a+b+c\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{3}{2}\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Bạn tự chứng minh BĐT phụ: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) \(x;y;z>0\)
Áp dụng, ta có:
\(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{c}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Rightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow a+b\ge a+c\ge b+c\)
\(\Rightarrow\frac{1}{a+b}\le\frac{1}{a+c}\le\frac{1}{b+c}\)
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\)(1)
Lại có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\)(2)
Từ (1)(2) \(\Rightarrow2\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a+b}{a+b}=3\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)