Đáp án D
Phương pháp: Sử dụng công thức tính nguyên hàm cơ bản của hàm số.
Cách giải:
Ta có:
∫ 0 1 x x 2 + 3 d x = ∫ 0 1 x 3 + 3 x d x = x 4 4 + 3 x 2 2 0 1 = 1 4 + 3 2 = 7 4
Đáp án D
Phương pháp: Sử dụng công thức tính nguyên hàm cơ bản của hàm số.
Cách giải:
Ta có:
∫ 0 1 x x 2 + 3 d x = ∫ 0 1 x 3 + 3 x d x = x 4 4 + 3 x 2 2 0 1 = 1 4 + 3 2 = 7 4
tìm x thuộc Z,biết
a)(x2+2)(x+3)>0
b)(x-2)(-4-x2)>0
c)(x+4)|x+5|lớn hơn hoặc bằng 0
d)(x+3)(x-4)<0
Cho hình bình hành ABCD với A(2; 4; -2), B(1; 1; -3), C(-2; 0; 5), D(-1; 3; 4). Diện tích của hình bình hành ABCD bằng:
A. 245 đvdt
B. 615 đvdt
C. 2 731 đvdt
D. 345 đvdt
bài 3: tính nhanh:
a) -5 phần 9 + 3 phần 5 - 3 phần 9 + -2 phần 5
b) 5 phần 17 - 9 phần 15 - 2 phần 17 + -2 phần 5
c) ( 1 phần 9 - 9 phần 17 ) + 3 phần 6 - ( 12 phần 17 - 1 phần 2 ) + 5 phần 9
bài 4: tìm x
a) 3 phần 4 - x = 1
b) x + 4 = 1 phần 5
c) x phần 4 - 3 phần 7 + 2 phần 5 = 31 phần 140
Toán 6 ! giúp mình đi mình tick cho các bạn!
d) 5 phần 12 + 5 phần x - 1 phần 8 = 1 phần 2
X và Y là số nào?
7-8-6-9-5-10-X-Y-3-12
A.4 và 11
B.2 và 9
C.4 và 15
D.1 và 4
giải các bất phương trình:
a) 4x - 7 > 0
b) -5x + 8 > 0
c) 9x - 10 \(\le\) 0
d) ( x - 1 )2 + 4 \(\le\) x2 + 3x + 10
P(x) = -5x^4 + 2x^3 - 6x^2 + 3 - 5x
Q(x) = 5x^4 - 2x^3 + 6x^2 - 7 + x
a) Tính P(x) + Q(x)
b) Tìm nghiệm của đa thức P(x) + Q(x)
c) Tìm đa thức M(x) sao cho Q(x) + M(x) = -P(x)
d) Tìm một đa thức nhận số 0 và ( -1 ) làm nghiệm ?
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x=0 có diện tích bằng:
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = 0; x = 2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = − 1 ; x = 0 có diện tích bằng:
A. 2 5 .
B. 1 9 .
C. 2 9 .
D. 1 5 .
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A − 1 ; 0 . Tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2. Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0, x=2 bằng 28 5 (phần tô đậm trong hình vẽ).
Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x= -1, x=0 có diện tích bằng
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Đường thẳng d: y=x+4 cắt đồ thị hàm số y = x 3 + 2 m x 2 + ( m + 3 ) x + 4 tại 3 điểm phân biệt A(0;4), B và C sao cho diện tích tam giác MBC bằng 4, với M(1;3). Mệnh đề nào sau đây là đúng?
A. m ∈ - ∞ ; 0
B. m ∈ 0 ; 2
C. m ∈ 2 ; 4
D. m ∈ 4 ; + ∞