a)6xn(x2-1)+2x(3xn-1+1)
=6xn(x2-1)+6xn+2x
=xn(6x2-6)+6xn+2x
=xn(6x2+6x-6)
b)3n+1-2*3n
=3n(3-1)
=3n
c)310*210-67(63-1)
=(3*2)10-67*63-67*(-1)
=610-610-(-67)
=67=279936
a)6xn(x2-1)+2x(3xn-1+1)
=6xn(x2-1)+6xn+2x
=xn(6x2-6)+6xn+2x
=xn(6x2+6x-6)
b)3n+1-2*3n
=3n(3-1)
=3n
c)310*210-67(63-1)
=(3*2)10-67*63-67*(-1)
=610-610-(-67)
=67=279936
Thực hiện phép tính :
a, \(^{6x^n.\left(x^2-1\right)+2x.\left(3x^{n-1}+1\right)}\)
b, \(3x^{n-2}.\left(x^{n+2}y^{n+2}\right)+y^{n+2}.\left(3x^{n-2}-y^{n-2}\right)\)
c, \(4x^{n+1}-3.4^n\)
d, \(6^2.3^8.2^8-6^5.\left(6^{5-1}\right)\)
Bài 2 . Thực hiện phép tính
a)\(6x^3\)\(\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)\)\(-2x^5\)\(-x^3\)
b)\(\left(x-3\right)\left(x^2+3x-2\right)\)
c)\(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
Rút gọn
a) \(3^{10}.2^{10}-6^7.\left(6^3-1\right)\)
b) \(2x^n.\left(3x^{n+1}-1\right)-3x^{n+1}.\left(2x^n-1\right)\)
thực hiện phép tính
a) \(\left(x-7\right)\left(x+5\right)\)
b) \(\left(xy-1\right)\left(xy+5\right)\)
c) \(\left(x^3-2x^2+x-1\right)\left(5-x\right)\)
thực hiện phép tính
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)\))
Rút gọn các biểu thức sau :
a) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)
b) \(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
c) \(x^{n-3}\left(x-y\right)+y\left(x^{n-3}+x^{n-3}y^{n-1}\right)\)
Chứng minh biểu thức sau ko phụ phuộc vào x
A = \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
B = \(x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
C = \(4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
D = \(5\left(3x^{n+1}-y^{n-1}\right)+3\left(x^{n+1}+5y^{n-1}\right)-5\left(3x^{n+1}+2y^{n-—}\right)\)
thực hiện phép tính:
\(3x^n.\left(4x^{n-1}-1\right)-2x^{n+1}\left(6x^{n-2}-1\right)\)
Thực hiện phép tính:
\(a,\dfrac{x^2+3x+9}{2x+10}.\dfrac{x+5}{x^3-27}\)
\(b,\left(\dfrac{6x+1}{x^2-6x}+\dfrac{6x-1}{x^2+6x}\right)\left(\dfrac{x^2-36}{x^2+1}\right)\)