`th1:`
`(x+1)(x^2-x+1):(x-3)(x^2+3x+9)`
`=(x^3+1^3):(x^3-3^3)`
`=(x^3+1):(x^3-27)`
`=(x^3+1)/(x^3-27)`
`=(x^3-27+28)/(x^3-27)`
`=1+28/(x^3-27)`
`**th2:`
`(x+1)(x^2-x+1)`
`=x^3+1^3=x^3+1`
`(x-3)(x^2+3x+9)`
`=x^3-3^3=x^3-27`
\(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)
\(\left(x-3\right)\left(x^2+3x+9\right)=x^3-27\)