Cho hình chóp tứ giác S . A B C D và một mặt phẳng (P) thay đổi. Thiết diện của hình chóp cắt bởi mặt phẳng (P) là một đa giác có số cạnh nhiều nhất có thể là
A. 5
B. 4
C. 3
D. 6
Cho khối lăng trụ tam giác A B C . A 1 B 1 C 1 có đáy là tam giác đều cạnh a , A 1 A = a 2 và A 1 A tạo với mặt phẳng (ABC) một góc 30 ° Tính thể tích khối tứ diện A 1 B 1 C A là
A. a 3 6 12
B. a 3 6 24
C. a 3 3 24
D. a 2 6 24
Cho hình chóp tứ giác SABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là một tam giác đều và nằm trong một mặt phẳng vuông góc với đáy (ABCD). Tính thể tích khối chóp SABCD.
A. a 3 6
B. a 3 3 2
C. a 3 3 6
D. a 3 2
Một hình trụ có diện tích xung quanh bằng 4 π thiết diện qua trục là hình vuông. Một mặt phẳng α song song với trục, cắt hình trụ theo thiết diện là tứ giác ABB’A’, biết một cạnh của thiết diện là một dây cung của đường tròn đáy của hình trụ và căng một cung 120 ° . Tính diện tích thiết diện ABB’A’?
A. 3 2
B. 3
C. 2 3
D. 2 2
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại C, góc đường thẳng BB' tạo với (ABC) một góc 60 0 . Hình chiếu vuông góc của B' lên (ABC) trùng với trọng tâm của tam giác ABC. Thể tích V của khối tứ diện A'.ABC là
A. 1 208 a 3
B. 18 208 a 3
C. 9 208 a 3
D. 27 208 a 3
Cho các phát biểu sau:
(1). Hai đa diện được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia.
(2). Hai đa giác phân biệt của một hình đa diện chỉ có thể có thể hoặc không có điểm chung,
hoặc chỉ có một đỉnh chung, hoặc một cạnh chung.
(3). Mỗi cạnh của đa giác nào của một hình đa diện cũng là cạnh chung của đúng hai đa giác.
Số phát biểu đúng là
A. 0
B. 1
C. 3
D. 2
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại C, BB' = a, góc B A C ^ = 60 ∘ , đường thẳng BB' tạo với (ABC) một góc 60 ∘ , Hình chiếu vuông góc của B' lên (ABC) trùng với trọng tâm của tam giác ABC. Thể tích V của khối tứ diện A'.ABC là:
A. 1 208 a 3 .
B. 18 208 a 3 .
C. 9 208 a 3 .
D. 27 208 a 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. G là trọng tâm của tam giác SAB. Thiết diện của hình chóp S.ABCD cắt bởi (IJG) là một tứ giác. Tìm điều kiện của AB,CD để thiết diện đó là hình bình hành?
A. AB = 3CD
B. AB = 2CD
C. CD = 2AB
D. CD = 3AB
Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a . Gọi M , N lần lượt là trung điểm các cạnh AC , BC ; P là trọng tâm tam giác BCD . Mặt phẳng (MNP) cắt tứ diện theo một thiết diện có diện tích là:
A. a 2 11 2
B. a 2 2 4
C. a 2 11 4
D. a 2 3 4
Cho hình nón đỉnh S , đáy là hình tròn tâm O . Thiết diện qua trục của hình nón là tam giác có một góc bằng 120 0 , thiết diện qua đỉnh S cắt mặt phẳng đáy theo dây cung A B = 4 a và là một tam giác vuông. Diện tích xung quanh của hình nón bằng
A. π 3 a 2 .
B. π 8 3 a 2 .
C. π 2 3 a 2 .
D. π 4 3 a 2 .