Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2y-z+3=0 và điểm A(2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy,Oz lần lượt tại các điểm B,C khác O. Thể tích khối tứ diện OABC bằng
A. 8.
B. 16.
C. 8/3
D. 16/3
Cho tứ diện OABC có OA=a; OB=2a; OC=3a đôi một vuông góc với nhau tại O. Lấy M là trung điểm của cạnh AC; N nằm trên cạnh CB sao cho CN=2/3 CB. Tính theo a thể tích khối chóp OAMNB
A. 2 a 3
B. a 3 6
C. 2 a 3 3
D. a 3 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 y - z + 3 = 0 và điểm A(2;0;0). Mặt phẳng ( α ) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4 3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:
A. 8.
B. 16.
C. 8 3
D. 16 3
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết O A = 3 , O B = 4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
B. 41 12
C. 144 41
D. 12 41
Trong không gian cho ba tia Ox,Oy,Oz đôi một vuông góc và các điểm A,B,C không trùng với O lần lượt thay đổi trên các tia Ox,Oy,Oz và luôn thoả mãn điều kiện: tỉ số giữa diện tích tam giác ABC và thể tích khối tứ diện OABC bằng 3 2 . Khối diện OABC có thể tích nhỏ nhất bằng
A. 6
B. 3 2
C. 4 3
D. 27 3 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 y − z + 3 = 0 và điểm A 2 ; 0 ; 0 .
Mặt phẳng α đi qua A, vuông góc với P , cách gốc tọa độ O một khoảng bằng 4 3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng
A. 8
B. 16
C. 8 3 .
D. 16 3 .
Cho tứ diện OABC có các góc tại đỉnh O đều bằng 90 ° và O A = a , O B = b ; O C = c . Gọi G là trọng tâm của tứ diện. Thể tích của khối tứ diện GABC bằng
A. a b c 6
B. a b c 8
C. a b c 4
D. a b c 24
Tứ diện OABC, có OA=a, OB=b, OC=c và đôi một vuông góc với nhau. Thể tích khối tứ diện bằng
A. a b c 3
B. abc
C. a b c 6
D. a b c 2
Thể tích của khối tứ diện OABC có OA=OB=OC=a và OA,OB,OC đôi một tạo với nhau một góc 60 ° bằng
A. a 3 6
B. a 3 3
C. a 3 2 12
D. 2 a 3 4