Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Tất cả các giá trị thực của m để bất phương trình ( 3 m + 1 ) 18 x + ( 2 - m ) 6 x + 2 x < 0  có nghiệm đúng ∀ x > 0  là

A.  ( - ∞ ; 2 )

B.  - 2 ; - 1 3

C.  - ∞ ; - 1 3

D.  ( - ∞ ; - 2 ]

Cao Minh Tâm
4 tháng 1 2018 lúc 16:55

Đáp án D

BPT

( 3 m + 1 ) 9 x + ( 2 - m ) 3 x + 1 < 0  (1).

Đặt t = 3 x  ( Đk : t > 0 ).

BPT trở thành:

  ( 3 m + 1 ) t 2 + ( 2 - m ) 3 x + 1 < 0 ⇔ ( 3 t 2 - t ) m < - t 2 - 2 t - 1 (2).

Để BPT (1) nghiệm đúng  ∀ x > 0  

->BPT (2) nghiệm đúng   ∀ t > 1

nghiệm đúng  ∀ t > 1

( vì t > 1  nên 3 t 2 - t = t ( 3 t - 1 ) > 0 )

⇔ - t 2 - 2 t - 1 3 t 2 - t > m  (3) nghiệm đúng ∀ t > 1 .

* Xét f ( t ) = - t 2 - 2 t - 1 3 t 2 - t khi t > 1  :

lim x → ∞ f ( t ) = - 1 3  ;

  f ' ( t ) = ( - 2 t - 2 ) ( 3 t 2 - t ) - ( - t 2 - 2 t - 1 ) ( 6 t - 1 ) ( 3 t 2 - t ) 2 = 7 t 2 + 6 t - 1 ( 3 t 2 - t ) 2  .

Ta thấy : f ' ( t ) = 0 ⇔ t = - 1 t = 1 7 ⇒ f ' ( t ) > 0 ∀ t > 1

Từ BBT ta thấy: BPT (3) ) nghiệm đúng ∀ t > 1 ⇔ f ( t ) > m ∀ t > 1 ⇔ m ≤ - 2


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết