Tập nghiệm của phương trình log x 2 - 2 x + 2 = 1 là
A. ∅
B. - 2 ; 4
C. 4
D. - 2
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Tập nghiệm của bất phương trình ( 2 + 1 ) x 2 + x ≥ ( 2 - 1 ) 2 là tập nào trong các tập sau?
A. ( - ∞ ; - 2 ] ∪ [ 1 ; + ∞ )
B. - 2 ; 1
C. ( - ∞ ; - 2 ) ∪ ( 1 ; + ∞ )
D. ℝ
Tập nghiệm của bất phương trình 2 log 3 ( x - 1 ) + log 3 ( 2 x - 1 ) ≤ 2 là
A. S = ( 1 ; 2 ]
B. S = ( - 1 / 2 ; 2 )
C. S = [ 1 ; 2 ]
D. S = [ - 1 / 2 ; 2 ]
Tập nghiệm của bất phương trình log 2 ( x + 1 ) - 2 log 4 ( 5 - x ) < 1 - log 2 ( x - 2 ) là
A. (3;5)
B. (2;3)
C. (2;5)
D. (-4;3)
Tập nghiệm của bất phương trình: 2 log 3 x - 1 + log 3 2 x - 1 ≤ 2 là:
A. S = 1 ; 2
B. S = - 1 2 ; 2
C. 1 ; 2
D. S = ( 1 ; 2 ]
Tập nghiệm của bất phương trình l o g 2 ( x + 1 ) < 1 là
A. ( - 1 ; + ∞ ) .
B. ( - ∞ ; 1 ) .
C. (-1;2).
D. (-1;1).
Tập nghiệm của bất phương trình log 0 , 5 ( x - 1 ) > 1 là
A. - ∞ ; 3 2
B. 1 ; 3 2
C. 3 2 ; + ∞
D. [ 1 ; 3 2 )
Bất phương trình 2 log 9 x + 2 − log 3 1 − x ≥ 1 có tập nghiệm là S = [ a ; b ) . Tính P = 4 a + 1 2 + b 3 .
A. P = − 1.
B. P = 5.
C. P = 4.
D. P = 1.
Tìm tập nghiệm Scủa bất phương trình ( 2 + 1 ) x ≤ ( 2 - 1 ) x
A. S = ( - ∞ ; - 3 ]
B. S = ( - ∞ ; - 3 )
C. [ 3 ; + ∞ )
D. ( 3 ; + ∞ ]