Cho hàm số f ( x ) = l n ( x 2 - 2 x + 3 ) . Tập nghiệm của bất phương trình f'(x)>0 là
A. ( 2 ; + ∞ ) .
B. ( - 1 ; + ∞ ) .
C. ( - 2 ; + ∞ ) .
D. ( 1 ; + ∞ ) .
Tìm tập nghiệm của bất phương trình ln x 2 < 0
A. S = (-1;1)
B. S = (0;1)
C. S = (-1;0)
D. S = (-1;1)\{0}
Biết rằng phương trình a x 4 + b x 3 + c x 2 + d x + e = 0 a , b , d , e ∈ ℝ , a ≠ 0 , b ≠ 0 có 4 nghiệm thực phân biệt. Hỏi phương trình sau có bao nhiêu nghiệm thực?
4
a
x
3
+
3
b
x
2
+
2
c
x
+
d
2
−
2
6
a
x
2
+
3
b
x
+
c
a
x
4
+
b
x
3
+
c
x
2
+
d
x
+
e
=
0
A. 0
B. 2
C. 4
D. 6
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + + x x 2 + 3 + 1 > 0 là
A. 1 ; 2
B. - 1 ; 2
C. - 1 ; + ∞
D. 1 ; + ∞
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + + x x 2 + 3 + 1 > 0 là:
A. (1;2)
B. (-1;2)
C. − 1 ; + ∞ .
D. 1 ; + ∞ .
Tập nghiệm của bất phương trình x + 2 x + 2 2 + 3 + 1 + x x 2 + 3 + 1 > 0 là
A. 1 ; 2
B. - 1 ; 2
C. − 1 , + ∞ .
D. 1 , + ∞ .
Tập nghiệm của bất phương trình 2 x 2 − 4 − 1 . ln ( x 2 ) < 0 là
A. S = [ 1 ; 2 ] .
B. S = { 1 ; 2 } .
C. S = ( 1 ; 2 ) .
D. S = ( − 2 ; − 1 ) ∪ ( 1 ; 2 ) .
Cho F(x) là một nguyên hàm của hàm số 1 e x + 1 , thỏa mãn F ( 0 ) = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + l n ( e x + 1 ) = 3
A. S = 3
B. S = - 3
C. S = ∅
D. S = ± 3
Nghiệm của bất phương trình 2 x + 2 - x - 3 < 0 là
A. log 2 3 - 5 2 < x < log 2 3 + 5 2
B. x < log 2 3 - 5 2 , x > log 2 3 + 5 2
A. log 2 3 - 5 2 < x < log 2 3 + 5 2
D. x < log 2 4 - 5 2 , x > log 2 4 + 5 2
Biết S=[a;b] là tập nghiệm của bất phương trình 3.9 x − 10.3 x + 3 ≤ 0. Tìm T = b − a .
A. T = 8 3 .
B. T = 1
C. T = 10 3 .
D. T = 2