Cho tam giác AHB có góc H = 90 ° ,góc A = 30° và BH =4cm.Tia phân giác góc B cắt AH tại O. Vẽ đường tròn (O;OH) và đường tròn (O;OA). Tính diện tích hình vành khăn nằm giữa hai đường tròn trên
Cho tam giác AHB có góc H = 90 ° ,góc A = 30° và BH =4cm.Tia phân giác góc B cắt AH tại O. Vẽ đường tròn (O;OH) và đường tròn (O;OA). Chứng minh đường tròn (O;OH) tiếp xúc với cạnh AB
Cho tam giác ABC có góc A = 90; C=30 và AB =3cm. Tia phân giác của góc B cắt AC tại O. Kẻ OK vuông góc với BC cắt BC tại K.
a. Vẽ hình
b. chứng minh tứ giác ABKO nội tiếp đường tròn
c. chứng minh BC là tiếp tuyến của đường tròn tâm O bán kính OA
d. tính diện tích tứ giác OABK
e. tứ C kẻ tiếp tuyến CL với đường tròn tâm O bán kính OA ( L là tiếp điểm khác K). Chứng minh ba điểm B, O, L thẳng hàng
Cho đường tròn (O) và đường thẳng d không giao với (O). Kẻ OH vuông góc với d tại H. Trên d lấy một điểm A và kẻ tiếp tuyến AB với (O) ( B là tiếp điểm) sao cho A và B nằm cùng nửa mặt phẳng bờ là đường thẳng OH. Gọi E là giao điểm của BH với (O). Chứng minh:
a/Tứ giác OBAH nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác trên.
b/ góc BOE = 2 góc AOH
c/Đặt OA = a. Tiếp tuyến của (O) tại E cắt d tại C. Tính OC theo a.
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho đường tròn (O) có bán kính OA = 5cm. Trên OA lấy điểm H sao cho OH = 3cm. Qua điểm H vẽ đường thẳng vuông góc với OA, cắt đường tròn tại hai điểm B và C. Tiếp tuyến của đường tròn (O) tại B cắt đường thẳng OA tại M.
a) Chứng minh tam giác OBM vuông
b) Tính BH,BM
c) Chứng minh MC là tiếp tuyến
d) Tìm tâm của đường tròn đi qua bốn điểm O, B, M, C.
Cho đường tròn (O) có bán kính OA = 5cm. Trên OA lấy điểm H sao cho OH = 3cm. Qua điểm H vẽ đường thẳng vuông góc với OA, cắt đường tròn tại hai điểm B và C. Tiếp tuyến của đường tròn (O) tại B cắt đường thẳng OA tại M.
a) Chứng minh tam giác OBM vuông
b) Tính BH,BM
c) Chứng minh MC là tiếp tuyến
d) Tìm tâm của đường tròn đi qua bốn điểm O, B, M, C.
Cho tam giác ABC vuông tại A có AB>AC, đường ca AH. Vẽ tròn đường kính BH cắt AB tại E, đường tròn đường kính HC cắt AC tại F.
a) Chứng minh tứ giác AEHF nội tiếp đường tròn ? Tìm tâm và đường kính của đường tròn ngoại tiếp tứ giác AEHF
b) Cứng minh AE.AB = AF.AC
c) Chứng minh bốn điểm B, E, F, C cùng nằm trên một đường tròn
d) Biết góc ABC bằng 30o, BH =4cm. tính tổng diện tích hình viên phân giới hạn bởi dây BE; dây HE và cung HE
cho đg tròn (O) có tâm O đừong kính BC. Lấy 1 điểm A trên đường tròn O sao cho AB > AC. từ A vẽ AH vuông góc với BC ( H THUỘC BC). Từ H vẽ HE vuông góc với AB và HF vuông góc với AC. ( E THUỘC AB, F THUỘC AC)
a) chứng minh tứ giác AEHF là hình chũ nhật
b) chứng minh OA vuông góc EF
c) đường thẳng EF cắt đường tròn O tại P, Q ( E nằm giữa P và F). Chứng minh rằng tam giác APH cân.