Cho tam giác ABC có c^h-2a^2c^2-2b^2c^2+a^2+a^2b^2+b^4. Tính cos C
Cho tam giác ABC thỏa mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng?
A. CosB + Cos C = 2 Cos A B. Sin B + Sin C = 2 Sin A
C. Sin B + Sin C = \(\dfrac{1}{2}SinA\) D. Sin B + Sin C = 2 Sin A
Cho a,b,c là độ dài các cạnh của một tam giác, ma, mb, mc là độ dài các đường trung tuyến của tam giác đó. Chứng minh rằng
\(\dfrac{a}{m_a}+\dfrac{b}{m_b}+\dfrac{c}{m_c}\ge\dfrac{\sqrt{3}}{2}\)
Cho a,b,c>0. CM
\(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\frac{\left(2b+c+a\right)^2}{2b^2+\left(c+a\right)^2}+\frac{\left(2c+a+b\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Cho tam giác ABC thỏa mãn \(\frac{m_b}{m_c}=\)\(\frac{c}{b}\)\(\ne1\)
(mb,mc là độ dài trung tuyến từ B,C
CMR \(2a^2=b^2+c^2\)
Cho tam giác ABC có diện tích là S. BC = a, AC = b, AB = c. G là trọng tâm tam giác. Chứng minh rằng:
a/ \(cotA=\dfrac{b^2+c^2-a^2}{4S}\)
b/ \(cotA+cotB+cotC=\dfrac{a^2+b^2+c^2}{4S}\)
c/ \(GA^2+GB^2+GC^2=\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
d/ \(b^2-c^2=a\left(b.cosC-c.cosB\right)\)
Nếu a+2c>b+c thì bất đẳng thức nào sau đây đúng?
a.-3a>-3b b.a^2 > b^2 c.2a>2b
Chứng minh rằng
\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
với\(\forall a,b,c\ge0\)
Cho các số thực a. b, c, d thỏa mãn a^2 + b^2 - 2a +4b + 1 = 0 và 2c - d + 1 = 0. tìm giá trị nhỏ nhất của biêu thức P= (a-c)^2 + (b-d)^2