Chu vi của tam giác ABC là
C=AB+BC+CA=10+24+30=64(cm)
Ta có : tg A'B'C' đồng dạng tg ABC
=>\(\dfrac{CvitgA'B'C'}{CvitgABC}=\dfrac{A'B'}{AB}\left(tisochuvi=tisodongdang\right)\)
=>\(\dfrac{128}{64}=\dfrac{A'B'}{10}\)
=>A'B'=\(\dfrac{128.10}{64}=20\left(cm\right)\)
Chứng minh tương tự B'C'=60cm
A'C'=48cm
ta có:
\(\dfrac{AB"}{AB}=\dfrac{AC"}{AC}=\dfrac{BC"}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{AB"+AC"+BC"}{AB+AC+BC}=\dfrac{128}{10+24+30}=\dfrac{128}{64}=2\)
\(AB"=2.10=20\)
\(AC"=2.24=48\)
\(BC"=2.30=60\)
Vậy AB" = 20cm , AC"=48cm, BC"=60cm