Tính chất hàm đặc trưng
Nếu \(f\left(x\right)\) đơn điệu thì \(f\left(x_1\right)=f\left(x_2\right)\Leftrightarrow x_1=x_2\)
Ở đây \(f\left(t\right)=e^t+t\) đơn điệu nên \(f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
Trong đó \(\left\{{}\begin{matrix}t_1=m.cosx-sinx\\t_2=2\left(1-sinx\right)\end{matrix}\right.\)