\(VT=\sqrt{x ^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\)
\(=\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\)
\(\ge\sqrt{1}+\sqrt{4}+\sqrt{5}=1+2+\sqrt{5}=3+\sqrt{5}=VP\)
Dấu "=" xảy ra <=> \(x-2=0\)<=> \(x=2\)
\(VT=\sqrt{x ^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\)
\(=\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}\)
\(\ge\sqrt{1}+\sqrt{4}+\sqrt{5}=1+2+\sqrt{5}=3+\sqrt{5}=VP\)
Dấu "=" xảy ra <=> \(x-2=0\)<=> \(x=2\)
Giải phương trình:
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
b)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
d) \(\sqrt{x^2-6x+9}+x=11\)
e) \(\sqrt{3x^2-4x+3}=1-2x\)
f) \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
g) \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
A)\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
B)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)tìm giá trị của x
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
Giải phương trình:
a. \(\sqrt{x^2-4}-x^2+4=0\)
b. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c. \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d. \(\sqrt{9x^2+6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
1.Giải phương trình:
\(\sqrt{x^2-4}-x^2+4=0\)
2.Giải phương trình:
\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
giải phương trình:
a) \(\sqrt{4x^2+4x+3}=8\)
b) \(\sqrt{5x^3+5x^2+7}=9\)
c) \(\dfrac{3}{5}\sqrt{x^5+4x^3+2x^2}=18\)