Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
Giải phương trình:
a.\(\left(17-6x\right)\sqrt{3x-5}+\left(6x-7\right)\sqrt{7-3x}=2+8\sqrt{36x-9x^2-35}\)
b.\(\sqrt{x^2-3x+2}=\sqrt{10x-20}-\sqrt{x-3}\)
Giải phương trình sau: \(\left(x+1\right)\left(\sqrt{x^2+3}+\sqrt{3x^2+1}\right)=2\sqrt{\left(x^2+3\right)\left(3x^2+1\right)}\)
Giải phương trình:
\(28+\sqrt[3]{x^2}=3x+2\sqrt[3]{x}+\left(x-4\right)\sqrt{x-7}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2+y^2+xy=9\\x+y+xy=3\end{cases}}\)
Giải phương trình \(\sqrt[3]{x^2+2}+\sqrt[3]{4x^2+3x-2}=\sqrt[3]{3x^2+x+5}+\sqrt[3]{2x^2+x-5}\)
Giải phương trình \(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
giải phương trình
\(-3x^2+x+3+\left(\sqrt{3x+2}-4\right)\sqrt{3x-2x^2}+\left(x+1\right)\sqrt{3x+2}=0\)
giải phương trình bằng phương pháp đặt ẩn phụ:
ạ) \(2\sqrt{\left(-2x^2+5x+7\right)}=x^3-3x^2-x+12\)
b) \(x^2-3x+3=\left(4+3x-\frac{4}{x}\right)\sqrt{\left(x-1\right)}\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)