\(=\left|\left(x-6\right)^3\right|=\left[{}\begin{matrix}\left(x-6\right)^3\left(x>=6\right)\\\left(6-x\right)^3\left(x< 6\right)\end{matrix}\right.\)
√(x - 6)6
=> |x - 6|
=> x - 6 ( x > = 6)
=> 6 - x (x < 6)
\(=\left|\left(x-6\right)^3\right|=\left[{}\begin{matrix}\left(x-6\right)^3\left(x>=6\right)\\\left(6-x\right)^3\left(x< 6\right)\end{matrix}\right.\)
√(x - 6)6
=> |x - 6|
=> x - 6 ( x > = 6)
=> 6 - x (x < 6)
Giải pt \(\left(\sqrt{x+3}+\sqrt{6-x}\right)\left(6\sqrt{2x+6}-2x-13\right)=6\sqrt{2}\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
Rút gọn:
a/ \(\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+1}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
b/\(\frac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Giải phương trình
\(\sqrt{x+9}\)+5\(\sqrt{x+6}\)=5+\(\sqrt{\left(x+9\right)\left(x+6\right)}\)
Tìm x biết: \(\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}\)
b) \(\sqrt{\sqrt{6x}-4x}\)
c) \(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}\)
d) \(\sqrt{\left(x-6\right)^6}\)
e) \(\sqrt{-12x+5}\)
f) \(2-4\sqrt{5x+8}\)
g) \(\sqrt{x^2-9}\)
\(x^3=\left(\sqrt[3]{5+2\sqrt{6}}+\sqrt[3]{5-2\sqrt{6}}\right)^3=\sqrt[3]{5+2\sqrt{6}}^3\)
\(+3\sqrt[3]{\left(5+2\sqrt{6}\right)^2}.\sqrt[3]{5-2\sqrt{6}}+3\sqrt[3]{5+2\sqrt{6}}.\sqrt[3]{\left(5-2\sqrt{6}\right)^2}+\sqrt[3]{5-2\sqrt{6}}^3\)
\(=5+2\sqrt{6}+3\sqrt[3]{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}.\sqrt[3]{5+2\sqrt{6}}\)
\(+3\sqrt[3]{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}.\sqrt[3]{5-2\sqrt{6}}+5-2\sqrt{6}\)
\(=5+5+3\sqrt[3]{\left(25-4.6\right)}.\sqrt[3]{5+2\sqrt{6}}+3\sqrt[3]{\left(25-4.6\right)}.\sqrt[3]{5-2\sqrt{6}}\)
\(=10+ 3\sqrt[3]{5+2\sqrt{6}}+3\sqrt[3]{5-2\sqrt{6}}\)
p/s : có bạn hỏi nên mình đăng , các bạn đừng report nhé