`@` `\text {Ans}`
`\downarrow`
\(\sqrt{\dfrac{9}{196}}=\dfrac{\sqrt{9}}{\sqrt{196}}=\dfrac{\sqrt{3^2}}{\sqrt{14^2}}=\dfrac{3}{14}\)
`@` `\text {Ans}`
`\downarrow`
\(\sqrt{\dfrac{9}{196}}=\dfrac{\sqrt{9}}{\sqrt{196}}=\dfrac{\sqrt{3^2}}{\sqrt{14^2}}=\dfrac{3}{14}\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
e,\(\sqrt{\dfrac{9}{169}}\)
f,\(\sqrt{1\dfrac{9}{16}}\)
g,\(\dfrac{\sqrt{2300}}{\sqrt{23}}\)
h,\(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)
Rút gọn
(\(\dfrac{\sqrt{x}}{3+\sqrt{x}}\)+\(\dfrac{2x}{9-x}\)):(\(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\))
(\(\dfrac{\sqrt{x}-2}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}+\dfrac{x+9}{25-x}\)):\(\dfrac{1-\sqrt{x}}{5+\sqrt{x}}\)
(\(\dfrac{1}{x-4}-\dfrac{1}{x-4\sqrt{x}+4}\)):\(\dfrac{\sqrt{x}}{2\sqrt{x}-x}\)
\(\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{x-9}\right).\left(\sqrt{x}+\dfrac{\sqrt{x}-9}{\sqrt{x}-1}\right)\)
CM rằng :(\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\)+\(\dfrac{3}{\sqrt{x}-3}\)).\(\dfrac{\sqrt{x}+3}{x+9}\)=\(\dfrac{1}{\sqrt{x}-3}\)(với x≥0,x≠9)
a : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
b : \(\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\)với x ≥ 0 x ≠ 1
c : \(\left(\dfrac{15-\sqrt{x}}{x-25}+\dfrac{2}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)với x ≥ 0 x ≠ 0
d : \(\dfrac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\dfrac{2}{\sqrt{x}+3}\)với x ≥ 0 x ≠ 1
Cmr:
\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
9) \(\sqrt{20}\) + 2\(\sqrt{45}\) + \(\sqrt{125}\) - 3\(\sqrt{80}\)
10) \(\sqrt{75}\) - \(\sqrt{5\dfrac{1}{3}}\) + \(\dfrac{9}{2}\) \(\sqrt{2\dfrac{2}{3}}\) + 2\(\sqrt{27}\)
Rút gọn biểu thức:\(\left(\dfrac{x+9}{x-9}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\right).\dfrac{x-3\sqrt{x}}{\sqrt{x}}\), x≥0, x≠9