đặ biểu thức là A. ta bình phương 2 vế được \(A^2=6-2\sqrt{5}\Rightarrow A=\sqrt{5}-1\)
đặ biểu thức là A. ta bình phương 2 vế được \(A^2=6-2\sqrt{5}\Rightarrow A=\sqrt{5}-1\)
Tính
a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
b) \(\sqrt{4+\sqrt{7}} -\sqrt{4-\sqrt{7}}\)
c) \(\sqrt{4-\sqrt{10-2\sqrt{5}}}-\sqrt{4+\sqrt{10-2\sqrt{5}}}\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)
\(4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right).\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(8+2\sqrt{16-10-2\sqrt{5}}\)
\(8+2\sqrt{6-2\sqrt{5}}\)
\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(8+2\left(\sqrt{5}-1\right)\)
\(8+2\sqrt{5}-2\)
\(6+2\sqrt{5}\)
\(\left(\sqrt{5+1}\right)^2\)
\(\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(|\sqrt{5}+1|\)
\(\sqrt{5}+1\)
\(\text{thư ngu như chó}\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Rút gọn biểu thức:
a)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
b)\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
c)\(5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}\)
d)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
e)\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
\(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)\(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\) rút gọn
Tính GTBT
M=\(\sqrt{4-\sqrt{10-2\sqrt{5}}}-\sqrt{4+\sqrt{10-2\sqrt{5}}}\)
* Thực hiện phép tính
a, A= \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
b, B= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c, C= \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
* Thực hiện phép tính
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
a)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
b)\(\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)