ĐKXĐ: \(x\ge\frac{-3}{2}\)
\(\sqrt{2x+3}=1+\sqrt{2}\)
<=> \(2x+3=\left(1+\sqrt{2}\right)^2\)
<=> \(2x+3=3+2\sqrt{2}\)
<=> \(2x-2\sqrt{2}=0\)
<=> \(2\left(x-\sqrt{2}\right)=0\)
<=> \(x=\sqrt{2}\) (TMĐK)
KL: \(x\in\left\{\sqrt{2}\right\}\)
ĐKXĐ: \(x\ge\frac{-3}{2}\)
\(\sqrt{2x+3}=1+\sqrt{2}\)
<=> \(2x+3=\left(1+\sqrt{2}\right)^2\)
<=> \(2x+3=3+2\sqrt{2}\)
<=> \(2x-2\sqrt{2}=0\)
<=> \(2\left(x-\sqrt{2}\right)=0\)
<=> \(x=\sqrt{2}\) (TMĐK)
KL: \(x\in\left\{\sqrt{2}\right\}\)
Giải phương trình
a) \(\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(2+2\sqrt{1-x^2}\right)=8\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
Rút gọn biểu thức: \(A=\left(\dfrac{4x+4}{2\sqrt{2x^3}-8}-\dfrac{\sqrt{2x}}{2x+2\sqrt{2x}+4}\right)\left(\dfrac{1+2\sqrt{2x^3}}{1+\sqrt{2x}}\right)\)
1) \(2\sqrt{x+3}=x-1+4\sqrt{2x-1}\)
2) \(\sqrt[4]{x-1}+\sqrt[4]{5-x}=2\)
3) \(\sqrt[3]{1-2x}+\sqrt{x+3}=1\)
4) \(\dfrac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\)
Giải PT: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Giải PT: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Giải PT: \(\sqrt{2x+3\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
giải phương trình
a)\(\sqrt{2x+1}+\sqrt{x+4}+x=3\)
b)\(\sqrt{x^2+3}+\sqrt{2x^2-1}=\sqrt{3x+6}\)
c) \(\left|x\right|+\sqrt{2x^2+2x+1}+\sqrt{x^2-6x+9}=2x+1\)
Giải các phương trình sau:
1. \(\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}=\dfrac{1}{2}\left(2x^3+x^2+2x+1\right)\)
2. \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
3. \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
4. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
5. \(x=\left(\sqrt{x}+2\right)\left(1-\sqrt{1-\sqrt{x}}\right)\)
6. \(2\sqrt[3]{2x-1}=x^3+1\)
7. \(\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}=x\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)