\(\sqrt{25a^2.\left(a^2-4a+4\right)}=\sqrt{5^2.a^2.\left(a-2\right)^2}=5\left|a\left(a-2\right)\right|\)
\(\sqrt{25a^2.\left(a^2-4a+4\right)}=\sqrt{5^2.a^2.\left(a-2\right)^2}=5\left|a\left(a-2\right)\right|\)
A, 1/m-2 × √m2-4m+4 (với m>2) => căn từ √m2 kéo dài tới +4 B, tìm x biết 2√x=14 (với x>0) X+2√x+1=4 (với v>0)
Rút gọn biểu thức
Giải nhanh giúp mk nha!Thanks <3
Q = \(\left(1-\dfrac{\sqrt{a}-4a}{1-4a}\right)\) : \(\left[1-\dfrac{1+2a-2\sqrt{a}\left(2\sqrt{a}+1\right)}{1-4a}\right]\) với a > 0, a ≠ \(\dfrac{1}{4}\)
Rút gọn
Giúp em với ạ ! Em cảm ơn !
ai làm nhanh giúp em với
\(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(5\sqrt{25a^2}-25a\)
\(\sqrt{16a^4}+6a^2\)
rút gọn các biểu thức sau
c,\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\) d,\(5\sqrt{16a}-4\sqrt{25a}-2\sqrt{100a}+\sqrt{169a}\) với a ≥ 0
e,\(5\sqrt{4a}-4\sqrt{a^2}-\sqrt{100a}\) với a ≥ 0 f,\(3\sqrt{4a^6}-5^3\) với a ≤ 0
Rút gọn
a) \(A=\frac{\sqrt{X^2-10x+25}}{x-5}\)
b)\(M=\left(\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{\sqrt{a}}{\sqrt{a}+2}\right):\frac{\sqrt{4a}}{a-4}\left(a>0;a\ne4\right)\)
giúp tui với
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)^2\sqrt{3+\sqrt{5}}\)
\(\dfrac{4-a^2}{48}\sqrt{\dfrac{36}{a^2-4a+4}}\left(a>2\right)\)
B1 : Rút gọn :
\(6xy.\sqrt{\frac{9x^2}{16y^2}}\) \(\left(x< 0;y\ne0\right)\)
\(\sqrt{\frac{4+20a+25a^2}{b^4}}\)\(\left(b< 0;a\ge\frac{-2}{5}\right)\)
\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}\)\(\left(0< m< n\right)\)
B2 : Tính :
\(1.\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}\)
\(2.\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}\)
\(3.\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)
\(4.\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)
Rút gọn các biểu thức sau
a) \(\sqrt{25a^2}+3a\) với a ≥ 0
b) \(\sqrt{9a^4}+3a^2\)
c) \(5\sqrt{4a^6}-3a^3\) với a < 0
\(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\) rút gọn biểu thức