Giải phương trình:
\(\sqrt{24+8\sqrt{9-x^2}}=x+2\sqrt{3-x}+4\)
tìm x biết
\(\sqrt{24+8\sqrt{9-x^2}}=x+2\sqrt{3-x}+4\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
1. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}\left(2< x< 5\right)\)
2. \(\frac{6}{1-\sqrt{3}}-\frac{3\sqrt{3}-1}{\sqrt{3}+1}+\sqrt{3}\)
3. \(\sqrt{29-12\sqrt{5}+\sqrt{24-8\sqrt{3}}}\)
4. \(\sqrt{\frac{4}{9-4\sqrt{5}}}-\sqrt{\frac{4}{9+4\sqrt{5}}}\)
5. \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{x}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\)
6. \(\frac{6-\sqrt{6}}{\sqrt{6}-1}-9\sqrt{\frac{2}{3}}-\frac{4}{2-\sqrt{6}}\)
7. \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{\left(\sqrt{x}-1\right)^2}{2}\left(x\ge0,x\ne1\right)\)
1) x-\(7\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3 4) \(\sqrt{8-\dfrac{2}{3}x}-5\sqrt{2}\) =0 5) \(\sqrt{x^2-4x+4}\) =2-x
CHỨNG MINH
\(\frac{\sqrt{X}}{\sqrt{X}-3}+\frac{2\sqrt{X}-24}{X-9}=\frac{\sqrt{X}+8}{\sqrt{X}+3}\)
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)