căn bậc hai của 1285 sấp sỉ 36 bạn nhé
tích nhoa
cảm hơn
ahihi^^
căn bậc hai của 1285 sấp sỉ 36 bạn nhé
tích nhoa
cảm hơn
ahihi^^
Tính giá trị
B= \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
C=\(\sqrt{21+\sqrt{41}}.\sqrt{5+\sqrt{4+\sqrt{41}}}.\sqrt{3+\sqrt{4+\sqrt{4+\sqrt{41}}}}.\sqrt{3-\sqrt{4+\sqrt{4+\sqrt{41}}}}\)
B= \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
C=\(\sqrt{21+\sqrt{41}}.\sqrt{5+\sqrt{4+\sqrt{41}}}.\sqrt{3+\sqrt{4+\sqrt{4+\sqrt{41}}}}.\sqrt{3-\sqrt{4+\sqrt{4+\sqrt{41}}}}\)
Diễn giải cho t vs nhé :) camon's
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)chứng minh
tính:\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}=\sqrt{\frac{2\left(4-\sqrt{7}\right)}{2}}-\sqrt{\frac{2\left(4+\sqrt{7}\right)}{2}}+\sqrt{2}\)
=\(\sqrt{\frac{8-2\sqrt{7}}{2}}-\sqrt{\frac{8+2\sqrt{7}}{2}}+\sqrt{2}\)
=\(\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}+\sqrt{2}\)
=\(\frac{\sqrt{7}-1}{\sqrt{2}}-\frac{\sqrt{7}+1}{\sqrt{2}}+\sqrt{2}\)
=\(\frac{-2}{\sqrt{2}}+\sqrt{2}\)
=\(-\sqrt{2}+\sqrt{2}\)
=0
Bài 1. Rút gọn
a. \(2\sqrt{8}-3\sqrt{18}+\sqrt{32}\)
b. \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{2}\right)^2}\)
c. \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
d. \(\sqrt{2-\sqrt{3}+\sqrt{2+\sqrt{3}}}\)
Bài 2. Giải phương trình
a. \(x\sqrt{8}-6\sqrt{2}=0\)
b. \(\sqrt{2x+1}-3=0\)
c. \(\sqrt{x^2-4x+4}-3=0\)
d. \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25+2}=0\)
Rút gọn:
a) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+\sqrt{48}}}}\)
b) \(\dfrac{\sqrt{3}-\sqrt{5+\sqrt{24}}+\sqrt{\sqrt{72}+11}}{\sqrt{6+\sqrt{20}}+\sqrt{2}-\sqrt{7+\sqrt{40}}}\)
Tính :
a ) \(S=\frac{1}{\sqrt{1}\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+.....+\)\(\frac{1}{\sqrt{2017}+\sqrt{2019}}\)
b ) \(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+....+\frac{1}{\sqrt{100}+\sqrt{102}}\)
c ) \(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{100}+\sqrt{101}}\)
d ) \(S=\frac{1}{\sqrt{3}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{12}}+....+\frac{1}{\sqrt{2016}+\sqrt{2019}}\)
Rút gọn:\(\sqrt{1+\sqrt{3+\sqrt{13+\sqrt{4\sqrt{3}}}}}+\sqrt{1-\sqrt{3-\sqrt{13-\sqrt{4\sqrt{3}}}}}\)