\(\Rightarrow\) -x +1 \(\ge\) 36 \(\Leftrightarrow\) -x \(\ge\) 35 \(\Rightarrow\) x \(\le\) -35
ĐKXĐ: -x+1>=0
=>-x>=-1
=>x<=1
\(\sqrt{-x+1}>=6\)
=>\(-x+1>=6^2=36\)
=>-x>=35
=>x<=-35
\(\Rightarrow\) -x +1 \(\ge\) 36 \(\Leftrightarrow\) -x \(\ge\) 35 \(\Rightarrow\) x \(\le\) -35
ĐKXĐ: -x+1>=0
=>-x>=-1
=>x<=1
\(\sqrt{-x+1}>=6\)
=>\(-x+1>=6^2=36\)
=>-x>=35
=>x<=-35
cho 2 biểu thức M =\(\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
P=\(\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)+\(\dfrac{2-8\sqrt{x}}{x-1}\)-\(\dfrac{2}{1-\sqrt{x}}\)
Cho \(A=\frac{x\sqrt{x}+5\sqrt{x}-12}{x-\sqrt{x}-6}-\frac{2\sqrt{x}-6}{\sqrt{x}+2}+\frac{\sqrt{x}+3}{3-\sqrt{x}}.\)
1.Rút gọn A
rút gọn
a,\(\sqrt{x-2\sqrt{x-1}}\)+\(\sqrt{x+2\sqrt{x-1}}\)
b,\(\sqrt{5-2\sqrt{6}}\)+\(\sqrt{5+2\sqrt{6}}\)
giải phương trình:
a)\(\sqrt{x^2-1}=x-1\)
b) \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
c) \(x^2+\sqrt{x+1}=1\)
d) \(\sqrt{3+x}+\sqrt{6-x}=3\)
e) \(\sqrt{3x-2}+\sqrt{x-1}=3\)
d) \(\sqrt{3+x}-\sqrt{2-x}=1\)
\(y=1-\frac{\sqrt{x}}{\sqrt{x+}1}:\frac{2+\sqrt{x}}{x-5\sqrt{x+6}}+\frac{3+\sqrt{x}}{\sqrt{x-2}}-\frac{2+\sqrt{x}}{\sqrt{x-3}}\)
Tìm ĐKXĐ:
a) \(\dfrac{3}{\sqrt{12x-1}}\)
b) \(\sqrt{\left(3x+2\right)\left(x-1\right)}\)
c) \(\sqrt{3x-2}\) .\(\sqrt{x-1}\)
d) \(\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\)
\(P=\frac{2\sqrt{X}-9}{x-5\sqrt{X+6}}-\frac{\sqrt{X}+3}{\sqrt{X}-2}-\frac{2\sqrt{X}+1}{3-\sqrt{X}}\)
Rút gọn P
Tính P nếu x = 6 - \(2\sqrt{5}\)
Tìm GTNN của biểu thức:
\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\)
tìm giá trị của x
a. 2 (3x-1)(2x +5) - 6(2x-1) (x+2) = - 6
b. 3 (2\(\sqrt{x}\)-1 ) (3\(\sqrt{x}\)-1) - (2\(\sqrt{x}\)-3) (9\(\sqrt{x}\)-1) - 3 = - 3
Tìm min A=\(\sqrt{x-1-2.\sqrt{x-2}}+\sqrt{x+7-6.\sqrt{x-2}}\)