3. TÍnh :
P = \(1+\frac{1}{2}\cdot\left(1+2\right)+\frac{1}{3}\cdot\left(1+2+3\right)+...+\frac{1}{2014}\cdot\left(1+2+...+2014\right)\)
so sánh
\(\left(-2\right)\left(-2^2\right)\left(-2^3\right).....\left(-2^{2014}\right)\)vs\(2^{2027091}\)
Tính:
\(-3^2+\left\{-54:\left[-2^8+7\right]\cdot\left(-2\right)^2\right\}\)
Tính hợp lí :
\(31\cdot\left(-18\right)+31\cdot\left(-81\right)-31\)
\(\left(-12\right)\cdot47+\left(-12\right)\cdot52+\left(-12\right)\)
\(13\cdot\left(23+22\right)-3\cdot\left(17+28\right)\)
\(-48+48\cdot\left(-78\right)+48\cdot\left(-21\right)\)
So Sánh \(A=\left(-2\right).\left(-2^2\right).\left(-2^3\right)......\left(-2^{2014}\right)\)
và \(B=2^{2027091}\)
Vậy A....B (>; <; =)
a) Tính
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\left(1-\frac{1}{2014}\right)\cdot\left(1-\frac{1}{2015}\right)\cdot\left(1-\frac{1}{2016}\right)\)
b) Tìm x:
\(\frac{x-2}{12}+\frac{x-2}{20}+\frac{x-2}{30}+\frac{x-2}{42}+\frac{x-2}{56}+\frac{x-2}{72}=\frac{16}{9}\)
TÍNH
\(C=\left(1+\frac{2}{3}\right)\cdot\left(1+\frac{2}{5}\right)\cdot\left(1+\frac{2}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1+\frac{2}{2015}\right)\cdot\left(1+\frac{2}{2017}\right)\)
\(D=\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{6}\right)\cdot\left(1-\frac{1}{10}\right)\cdot\left(1-\frac{1}{15}\right)\cdot\cdot\cdot\cdot\left(1-\frac{1}{780}\right)\)
tính:
D=\(\left[\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{25}\right)\right]\):\(\left[\left(1+\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1+\frac{1}{25}\right)\right]\)
Tính nhanh :
\(\dfrac{\left(\dfrac{2}{3}\right)^3\cdot\left(-\dfrac{3}{4}\right)^2\cdot\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2\cdot\left(-\dfrac{5}{12}\right)^3}\)
tính nhanh
a, \(\frac{-2}{5}\cdot\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{2}{5}\cdot\frac{2}{17}+\frac{-2}{5}\)
b, \(\frac{1}{5}\cdot\left(\frac{4}{13}-\frac{9}{11}\right)+\frac{1}{3}\left(\frac{9}{13}-\frac{4}{22}\right)\)
c, \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
d, \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)