m kmnhbk5htb ,k55555555555555555555555555555555555e,
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{6+2\sqrt{5}}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}\)
Vì \(\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\Rightarrow\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)
Có \(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}\)
\(=\sqrt{\sqrt{\left(1+\sqrt{5}\right)^2}}\)
\(=\sqrt{1+\sqrt{5}}< \sqrt{1+\sqrt{6}}\)
Vậy \(\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)
Ta có: \(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{\left(1+\sqrt{5}\right)^2}}\)
\(=\sqrt{1+\sqrt{5}}< \sqrt{1+\sqrt{6}}\)
\(\Rightarrow\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)