Tìm trước khi hỏi , google-sama chưa tính phí mà !
Câu hỏi của phạm minh anh - Toán lớp 7 - Học toán với OnlineMath
\(\frac{a}{b}\)= \(\frac{a\left(a+n\right)}{b\left(b+n\right)}\) = \(\frac{ab+an}{b^2+bn}\)
\(\frac{a+n}{b+n}\)= \(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)= \(\frac{ab+nb}{b^2+bn}\)
Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)< \(\frac{a+n}{b+n}\)
Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)= \(\frac{a+n}{b+n}\)
Ta có:
\(\frac{a}{b}=\frac{a.\left(b+n\right)}{b.\left(b+n\right)}=\frac{ab+an}{b.\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{\left(a+n\right).b}{b.\left(b+n\right)}=\frac{ab+bn}{b.\left(b+n\right)}\)
TH1: a>b => an>bn => ab+an>ab+bn => \(\frac{a}{b}>\frac{a+n}{b+n}\)
TH2: a<b => \(\frac{a}{b}< \frac{a+n}{b+n}\)