Ta có:
\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}=\left(-125\right)^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}=\left(-128\right)^{13}\)
Ta thấy:
\(-125>-128\)
\(\Rightarrow\left(-125\right)^{13}>\left(-128\right)^3\)
\(\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)
Ta có:
\(\left(-5\right)^{39}=\left[-5^3\right]^{13}=-125^{13}\)
\(\left(-2\right)^{91}=\left[-2^7\right]^{13}=-128^{13}\)
Vì \(-125^{13}< -128^{13}\) nên \(\left(-5\right)^{39}< \left(-2\right)^{91}\)