Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(C=\frac{100^{100}+1}{100^{90}+1}< \frac{100^{100}+1+99}{100^{90}+1+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}=D\)
Vậy \(C< D\)
àk bạn ơi mk nhầm :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
Áp dụng công thức thứ hai ta có :
\(C=\frac{100^{100}+1}{100^{90}+1}>\frac{100^{100}+1+99}{100^{90}+1+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}=D\)
Vậy \(C>D\) ( vầy mới đúng )
T/ có: C= \(\frac{100^{100}+1}{100^{90}+1}\) => \(\frac{C}{100}=\frac{100^{100}+100-99}{100^{100}+100}\)= \(1-\frac{99}{100^{100}+100}\)
D= \(\frac{100^{99}+1}{100^{89}+1}\)=> \(\frac{D}{100}=\frac{100^{99}+100-99}{100^{99}+100}=1-\frac{99}{100^{99}+100}\)
Do \(\frac{99}{100^{100}+100}< \frac{99}{100^{99}+100}\) => \(1-\frac{99}{100^{100}+100}>1-\frac{99}{100^{99}+100}\)=> \(\frac{C}{100}>\frac{D}{100}\)=> C> D