A=100^101+1/100^100+1
B=100^100+1/100^99+1
A<100^101+1+99/100^100+1+99
A<100^101+100/100^100+100
A<100.(100^100+1)/100.(100^99+1)
A<100^100+1/100^99+1=B
=> A<B
Vậy A<B
A=100^101+1/100^100+1
B=100^100+1/100^99+1
A<100^101+1+99/100^100+1+99
A<100^101+100/100^100+100
A<100.(100^100+1)/100.(100^99+1)
A<100^100+1/100^99+1=B
=> A<B
Vậy A<B
cho A=1/2.3/4.5/6........99/100 va B=2/3.4/5.5/6.........100/101 so sanh A va B
so sanh Ava B biet A=(100^99+99^99)^100 va B=(100^100+99^100)^99
So sánh bt: \(M=\dfrac{100^{100}+1}{100^{99}+1};N=\dfrac{100^{101}+1}{100^{100}+1}\)
so sánh:
a)C= \(\dfrac{100^{99}+1}{100^{100}+1}\) và D= \(\dfrac{100^{100}+1}{100^{101}+1}\)
b)E=\(\dfrac{2020^{2021}+1}{2020^{2022}+1}\) và F=\(\dfrac{2020^{2020}+1}{2020^{2021}+1}\)
So sanh A và B biết A = ( 100^99 + 99^99)^100 và B = ( 100^100 + 99^100)^99
So sánh \(M=\frac{100^{100}+1}{100^{99}+1}\)và\(N=\frac{100^{101}+1}{100^{100}+1}\)
Bài 1 So sánh
\(\left(\frac{-1}{16}\right)^{100}\)va \(\left(\frac{-1}{2}\right)^{500}\)
Bài 2 So sánh
A =\(\frac{100^{100}+1}{100^{99}+1}\)Va B =\(\frac{100^{69}+1}{100^{68}+1}\)
Các p ơi giúp mink vs
Tinh tong sau:
N=1^1+2^2+3^3+...+100^100. So sanh N voi 101^102.
1. So sánh A và B biết : A = \(\frac{2019^{2019}+1}{2019^{2020}+1}\) ; B =\(\frac{2019^{2018}+1}{2019^{2019}+1}\)
2.So sánh M và N biết: M = \(\frac{100^{100}+1}{100^{99}+1}\) ; N= \(\frac{100^{101}+1}{100^{100}+1}\)
Hiện tại mình đang cần gấp giúp mk nha!