( ghi lại đề )
Ta có :
\(15A=\frac{15^{2016}+15}{15^{2016}+1}=\frac{15^{2016}+1+14}{15^{2016}+1}=\frac{15^{2016}+1}{15^{2016}+1}+\frac{14}{15^{2016}+1}=1+\frac{14}{15^{2016}+1}\)
\(15B=\frac{15^{2015}+15}{15^{2015}+1}=\frac{15^{2015}+1+14}{15^{2015}+1}=\frac{15^{2015}+1}{15^{2015}+1}+\frac{14}{15^{2015}+1}=1+\frac{14}{15^{2015}+1}\)
Vì \(\frac{14}{15^{2016}+1}< \frac{14}{15^{2015}+1}\) nên \(1+\frac{14}{15^{2016}+1}< 1+\frac{14}{15^{2015}+1}\) hay \(15A< 15B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
15A=(15^2016+15)/15^2016+1
=(15^2016+1+14)/15^2016+1
= 1+14/(15^2016+1).
15B=(15^2015+15)/15^2015+1
= 1+14/(15^2015+1)
Có: 14/(15^2016+1)<14/(15^2015+1)
=> A<B.