a \(125^{80}=\left(5^3\right)^{80}=5^{240}\)
\(25^{118}=\left(5^2\right)^{118}=5^{236}\)
vif\(5^{240}>5^{236}\)
neen\(125^{80}>25^{118}\)
a) 12580= (53)80 = 5240
25118=(52)118=5236
Vì 5240 > 5 236
Vậy : 12580 > 25118
b) 2161> 2160= (24)40= 1640
Vì 1640>1340
Vậy : 1340<2161
\(a,125^{80}\) Và \(25^{118}\)
Ta có : \(125^{80}=\left(5^3\right)^{80}=5^{240}\)
\(25^{118}=\left(5^2\right)^{118}=5^{236}\)
\(\Rightarrow5^{240}>5^{236}\Rightarrow125^{80}>25^{118}\)
\(b,13^{40}\) Và \(2^{161}\)
Ta có : \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}\)
Vì : \(16^{40}>13^{40}\Rightarrow13^{40}< 2^{161}\)