\(8^2=64=32+32\\ \left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{255}\)
\(32^2=1024>1020=\left(2\sqrt{255}\right)^2\\ \Rightarrow64>32+2\sqrt{255}\\ \Rightarrow8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\\ \Leftrightarrow8>\sqrt{15}+\sqrt{17}\\ \Leftrightarrow-8< -\left(\sqrt{15}+\sqrt{17}\right)\)
Lời giải:
\((\sqrt{15}+\sqrt{17})^2=32+2\sqrt{15.17}=32+2\sqrt{(16-1)(16+1)}\)
\(=32+2\sqrt{16^2-1}< 32+2\sqrt{16^2}=64\)
\(\Rightarrow \sqrt{15}+\sqrt{17}< 8\)
\(\Rightarrow -(\sqrt{15}+\sqrt{17})> -8\)