\(1-B=1-\frac{2003.2004-1}{2003.2004}=\frac{2003.2004-2003.2004+1}{2003.2004}=\frac{1}{2003.2004}\)
\(1-A=1-\frac{2004.2005-1}{2004.2005}=\frac{2004.2005-2004.2005+1}{2004.2005}=\frac{1}{2004.2005}\)
\(\text{Vì }2003.2004<2004.2005\Rightarrow\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
\(\text{hay }1-B>1-A\)
Mà 1 = 1 => B < A.
\(B=1-\frac{1}{2003.2004}\)
\(A=1-\frac{1}{2004.2005}\)
Ta thấy: \(\frac{1}{2003.2004}\)> \(\frac{1}{2004.2005}\)
=> B > A