1 + 22 + 23 + ... + 22005
Gọi dãy số trên là A
A = \(1+2^2+2^3+....+2^{2005}\)
A =\(2^0+2^2+2^3+....+2^{2005}\)
A + \(2^1\)= \(2^0+2^1+2^2+2^3+....+2^{2005}\)
( A + 2 ) x 21 = \(\left(2^0+2^1+2^2+2^3+....+2^{2005}\right)\times2^1\)
Ax2 + 4 =\(2^1+2^2+2^3+2^4+....+2^{2006}\)
4 + A x 2 - A =\(2^1+2^2+2^3+2^4+....+2^{2006}-\left(1+2^2+2^3+...2^{2005}\right)\)
4 + A = \(2^1+2^2+2^3+2^4+....+2^{2006}-1-2^2-2^3-....-2^{2005}\)
4 + A = \(2^{2006}-1\)
A=\(2^{2006}-1-4\)
A = \(2^{2006}-5\)
Mà \(2^{2006}-5< 2^{2006}\)
\(\Rightarrow1+2^2+2^3+....+2^{2005}< 2^{2006}\)