Cho số phức z = a + b i ( a , b ∈ R ) . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2
B. 0
C. 3
D. 1
Cho số phức z = a + b i a , b ∈ ℝ . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2.
B. 0.
C. 3.
D. 1.
Số phức z=a+bi ( a , b ∈ R ) là một số thuần ảo khi và chỉ khi
A. a = 0 b ≠ 0
B. a = 0
C. a ≠ 0 b = 0
D. b = 0
Nghiệm phức có phần ảo dương của phương trình z2 – z +1 = 0 là z = a + bi, a,b ∈ R. Tính a+ 3 b
A. 2
B. 1
C. –2
D. –1
Số phức z = a + b i a , b ∈ R vừa là số thực vừa là số thuần ảo khi và chỉ khi
A. a ≠ 0 , b = 0
B. a = 0 , b ≠ 0
C. a = b = 0
D. a 2 + b 2 > 0
Cho số phức z thỏa mãn 2 − 3 i z + 4 + i z ¯ + 1 + 3 i 2 = 0 . Gọi a,b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2a-3b bằng
A. 1.
B. 4.
C. 11.
D. -19.
Số phức z = a + b i a , b ∈ ℝ thỏa mãn z + 9 i − z i − 3 = 0 . Khi đó giá trị a + b là:
A. 1
B. 3
C. -4
D. -1
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Cho số phức z = a+bi a , b ∈ R thoả mãn z - 2 i z - 2 là số thuần ảo. Khi số phức z có môđun lớn nhất. Tính giá trị biểu thức P=a+b
A. P = 0
B. P = 4
C. P = 2 2 + 1
D. P = 1 + 3 2