Đáp án A.
Ta có ln x 3 x − 2 = 0 ⇔ x 3 x − 2 = 1 ⇒ x = 1 x > 2 3 .
Đáp án A.
Ta có ln x 3 x − 2 = 0 ⇔ x 3 x − 2 = 1 ⇒ x = 1 x > 2 3 .
Cho hàm số f ( x ) = l n ( x 2 - 2 x + 3 ) . Tập nghiệm của bất phương trình f'(x)>0 là
A. ( 2 ; + ∞ ) .
B. ( - 1 ; + ∞ ) .
C. ( - 2 ; + ∞ ) .
D. ( 1 ; + ∞ ) .
Cho F(x) là một nguyên hàm của hàm số 1 e x + 1 , thỏa mãn F ( 0 ) = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + l n ( e x + 1 ) = 3
A. S = 3
B. S = - 3
C. S = ∅
D. S = ± 3
Cho hàm số f ( x ) = l n ( x 2 - 3 x ) . Tập nghiệm S của phương trình f'(x) = 0 là:
A. S = ∅
B. S = 3 2
C. S = {0;3}
D. S = - ∞ ; 0 ∪ 3 ; + ∞
Nghiệm của phương trình ln(x+1)=2 là
A. 99
B. e 2 - 1
C. 101
D. e 2 + 1
Tìm số nghiệm của phương trình lnx + ln(2x-1) =0
A. 2
B. 4
C. 1
D. 0
Tìm tất cả các giá trị của tham số m để phương trình ln ( m + ln ( m + x ) ) = x có 2 nghiệm phân biệt
A. m ≥ 0
B. m > 1
C. m < e
D. m ≥ -1
Tập nghiệm của bất phương trình 2 x 2 − 4 − 1 . ln ( x 2 ) < 0 là
A. S = [ 1 ; 2 ] .
B. S = { 1 ; 2 } .
C. S = ( 1 ; 2 ) .
D. S = ( − 2 ; − 1 ) ∪ ( 1 ; 2 ) .
Phương trình ln ( x 2 + 1 ) . ln ( x 2 - 2018 ) = 0 có bao nhiêu nghiệm
A. 1
B. 4
C. 3
D. 2
Kí hiệu F (x) là một nguyên hàm của hàm số f ( x ) = 1 e x + 1 , biết F 0 = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + ln ( e x + 1 ) = 3 .
A. S = - 3 ; 3
B. S = 3
C. S = ∅
D. S = - 3
Cho các mệnh đề sau:
(I). Nếu a = b c t h ì 2 ln a = ln b + ln c
(II). Cho số thực 0 < a ≠ 1. Khi đó a - 1 log a x ≥ 0 ⇔ x ≥ 1
(III). Cho các số thực 0 < a ≠ 1 , b > 0 , c > 0 . Khi đó b log a c ≥ 0 ⇔ x ≥ 1
(IV). l i m x → + ∞ 1 2 x = - ∞ .
Số mệnh đề đúng trong các mệnh đề trên là
A. 3
B. 4
C. 2
D. 1