Đáp án B
1 - 2 i - 1 + i = -3i là số thuần ảo.
2018 i 2 = -2018 là số thuần thực.
2017 - i + 2018 + i = 4035 là số thuần thực.
2 - i - 3 - i = -1 là số thuần thực.
Đáp án B
1 - 2 i - 1 + i = -3i là số thuần ảo.
2018 i 2 = -2018 là số thuần thực.
2017 - i + 2018 + i = 4035 là số thuần thực.
2 - i - 3 - i = -1 là số thuần thực.
Trong các số phức: (1+i)2, (1+i)8, (1+i)3, (1+i)5 số phức nào là số thực?
A. (1+i)3
B. (1+i)8
C. (1+i)2
D. (1+i)5
Tập hợp các điểm biểu diễn số phức z sao cho u = z + 2 + 3 i z - i . là một số thuần ảo. Là một đường tròn tâm.I(a;b)
Tính tổng a + b
A. 2
B. 1
C. - 2
D. 3
Tập hợp các điểm biểu diễn số phức z sao cho u = z + 2 + 3 i z - i . là một số thuần ảo. Là một đường tròn tâm.I(a;b)
Tính tổng a + b
A. 2
B. 1
C. - 2
D. 3
Tìm các số thực x,y thỏa mãn (x-2)+(y-3)i=1-2i với i là đơn vị ảo
A. x=1;y=-2
B. x=-1;y=-5
C. x=1;y=3
D. x=0;y=4
Tìm các số thực a và b thoả mãn a+(b-i)i=1+3i với i là đơn vị ảo.
A.a = -2, b = 3
B. a = 1, b = 3
C. a = 2, b = 4
D. a = 0, b = 3
Tìm các số thực a và b thỏa mãn 2 a + ( b + i ) i = 1 + 2 i với i là đơn vị ảo.
A. a = 0 , b = 2
B. a = 1 2 , b = 1
C. a = 0 , b = 1
D. a = 1 , b = 2
Có bao nhiêu số phức z thỏa mãn: z - i = 2 và z 2 là số thuần ảo:
A. 3
B. 1
C. 4
D. 2
Có bao nhiêu số phức z thỏa mãn: |z-i|= 2 và z 2 là số thuần ảo:
A. 3
B. 1
C. 4
D. 2
Cho i là đơn vị ảo. Tập hợp các điểm biểu diễn hình học số phức thỏa mãn z − i + 1 = z + i − 2 là đường thẳng có phương trình
A. 2 x − 3 y + 1 = 0
B. 6 x − 4 y − 3 = 0
C. 2 x − 3 y − 1 = 0
D. 4 x − 6 y + 3 = 0
Cho i là đơn vị ảo. Tập hợp các điểm biểu diễn hình học số phức thỏa mãn z - i + 1 = z + i - 2 là đường thẳng có phương trình
A. 2 x - 3 y - 1 = 0
B. 6 x - 4 y - 3 = 0
C. 2 x - 3 y + 1 = 0
D. 4 x - 6 y + 3 = 0