Trong không gian Oxyz, cho ba điểm A 2 ; 0 ; 0 , B 0 ; 2 ; 0 , C 0 ; 0 ; 2 và D là điểm đối xứng của gốc tọa độ O qua mặt phẳng (ABC). Điểm I(a,b,c) là tâm mặt cầu đi qua bốn điểm A; B; C; D. Tính giá trị của biểu thức P = a + 2 b + 3 c
A. P = 0
B. P = 2
C. P = -2
D. P = 1
Cho hình lập phương ABCD.A′B′C′D′ cạnh a. Khoảng cách từ điểm A đến mặt phẳng (A′B′CD) bằng
A. a 2
B. 3 a
C. 3 3 a
D. 2 2 a
Cho hình lập phương ABCD.A′B′C′D′. Gọi O là tâm của hình vuông ABCD. Côsin của góc giữa hai mặt phẳng (OA′B′) và (OC′D′) bằng
A. 2 5
B. 4 9
C. 8 25
D. 3 5
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x+2y-2z-10=0 với hai điểm A(1;2;0), B(-1;3;1). Gọi (Q) là một mặt phẳng đi qua A, B đồng thời tạo với (P) một góc nhỏ nhất. Biết rằng phương trình tổng quát của mặt phẳng (Q) là: ax+by+cz+d=0 với a, b, c, d là những số thực, Khi đó giá trị của tổng S = b + c + d bằng
A. 10
B. 12
C. 18
D. -8
Cho hình lập phương ABCD.A'B'C'D' có A(0;0;0), B(1;0;0), D(0;1;0) và A'(0;0;1). Gọi (P): ax+by+cz+d=0 là mặt phẳng chứa đường thẳng CD' và tạo với mặt phẳng (BB'D'D) góc nhỏ nhất. Cho T=a+2b+3c+4d. Tìm giá trị nguyên âm lớn nhất của T biết a là số nguyên.
A. -1
B. -2
C. -6
D. -4
Số mặt phẳng đối xứng của hình lập phương là
A.6
B.7
C.8
D.9
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + y - 4 z = 0 đường thẳng d: x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vectơ chỉ phương của đường thẳng ∆ . Tính b + c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;1;3), mặt phẳng (P):x+y+z-7=0 và đường thẳng (d): x - 1 2 = y 1 = z 3 . Mặt cầu (S) có tâm I(a;b;c) thuộc (P), bán kính R= 6 và tiếp xúc với (d) tại A với a,b,c là các số thực dương. Giá trị của biểu thức a+2b+3c bằng
A. 11.
B. 17.
C. 16.
D. 12.
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Biết góc B A C ^ = 30 ° , SA=a và BA=BC=a. Gọi D là điểm đối xứng với B qua AC. Khoảng cách từ B đến mặt (SCD) bằng
A. 21 7 a
B. 2 2 a
C. 2 21 7 a
D. 21 14 a