Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ác Mộng

Rút gọn:

\(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

Trần Thị Loan
8 tháng 7 2015 lúc 10:27

 

Điều kiện: x khác 0

\(=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)

\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|\)

Minh Triều
8 tháng 7 2015 lúc 10:31

\(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

=\(\frac{\sqrt{x^4-6x+9+12x^2}}{\sqrt{x^2}}+\sqrt{x^2+4x+4-8x}\)

=\(\frac{\sqrt{x^4+6x+9}}{x}+\sqrt{x^2-4x+4}\)

=\(\frac{\sqrt{\left(x^2+3\right)^2}}{x}+\sqrt{\left(x-2\right)^2}\)

=\(\frac{\sqrt{\left(x^2+3\right)^2}}{x}+\left|x-2\right|\)

=\(\frac{x^2+3}{x}+\left|x-2\right|\)

TH1: x\(\ge\)2 =>|x-2|=x-2

=>\(\frac{x^2+3}{x}+\left|x-2\right|\)

=\(\frac{x^2+3}{x}+x-2\)

=\(\frac{x^2+3}{x}+\frac{x^2-2x}{x}=\frac{2x^2-2x+3}{x}\)

TH2:x\(\le\)2 =>|x-2|=2-x

=>\(\frac{x^2+3}{x}+\left|x-2\right|\)

=\(\frac{x^2+3}{x}+2-x\)

=\(\frac{x^2+3}{x}+\frac{2x-x^2}{x}=\frac{2x+3}{x}\)


Các câu hỏi tương tự
Đặng Công Minh Nghĩa
Xem chi tiết
Mickey Nhi
Xem chi tiết
Phan Văn Hiếu
Xem chi tiết
Mickey Nhi
Xem chi tiết
Trần Nguyễn Vân Ngọc
Xem chi tiết
Trí Tô
Xem chi tiết
Phạm Nguyễn Hạnh Vy
Xem chi tiết
chi chăm chỉ
Xem chi tiết
Vân Bùi
Xem chi tiết