\(Q=\sqrt{x}-2+\sqrt{x}+2=2\sqrt{x}\)
\(Q=\sqrt{x}-2+\sqrt{x}+2=2\sqrt{x}\)
Cho biểu thức B= (x - 2sqrt(x))/(sqrt(x) - 2) - (2x + 12sqrt(x) + 18)/(sqrt(x) + 3) với x ≥ 0 ,x ≠ 4 Rút gọn B và tìm x để B + 8 > 0 .
M = (3/(sqrt(x) + 3) + (x + 9)/(x - 9)) / ((2sqrt(x) - 5)/(x - 3sqrt(x)) - 1/(sqrt(x))) Rút gọn M giúp mik vs Thanks ah
rút gọn Q= ($\frac{\sqrt{x+2} }{x-2\sqrt{x}+4 }$ - $\frac{x-\sqrt{x} }{x\sqrt{x} +8 }$ ). $\frac{5x-10\sqrt{x}+20 }{5\sqrt{x}+4}$
Q=(\(\left(\dfrac{4\sqrt{x}}{x+2\sqrt{x}}+\dfrac{8\sqrt{x}}{4-x}\right)\) : \(\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x≠4, x>0
a) rút gọn Q
b) tìm x để Q<4
a) \(Q=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+2x\sqrt{x}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}\left(x>0,y>0\right)\)
Rút Gọn
b) \(M=\frac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right)x^2-\sqrt{6}}\)
Rút Gọn
Rút gọn biểu thức:
\(\sqrt{x+\sqrt{x^2-4}}-4\sqrt{x-\sqrt{x^2-4}}\)
Rút gọn:
\(E=\sqrt{x+4\sqrt{x-2}+2}-\sqrt{x-4\sqrt{x-2}+2}\)
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
RÚT GỌN
A=\(\sqrt{X-\sqrt{X^2-4}}+\sqrt{X+\sqrt{X^2-4}}\)VỚI X> = 2