\(C=\frac{1}{3}.\frac{1}{7}+\frac{1}{7}.\frac{1}{11}+\frac{1}{11}.\frac{1}{13}+...+\frac{1}{2011}.\frac{1}{2015}\)
\(C=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.13}+...+\frac{1}{2011.2015}\)
\(4C=4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.13}+...+\frac{1}{2011.2015}\right)\)
\(4C=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.13}+...+\frac{4}{2011.2015}\)
\(4C=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{2011}-\frac{1}{2015}\)
\(4C=\frac{1}{3}-\frac{1}{2015}=\frac{2012}{6045}\)
\(C=\frac{2012}{6045}:4=\frac{503}{6045}\)