ĐKXĐ: \(x\ge2\)
\(\sqrt{2x-2\sqrt{x^2-4}}+\sqrt{x-2}\)
\(=\sqrt{x+2-2\sqrt{\left(x+2\right)\left(x-2\right)}+x-2}+\sqrt{x-2}\)
\(=\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}+\sqrt{x-2}\)
\(=\sqrt{x+2}-\sqrt{x-2}+\sqrt{x-2}\)
\(=\sqrt{x+2}\)
ĐKXĐ: \(x\ge2\)
\(\sqrt{2x-2\sqrt{x^2-4}}+\sqrt{x-2}\)
\(=\sqrt{x+2-2\sqrt{\left(x+2\right)\left(x-2\right)}+x-2}+\sqrt{x-2}\)
\(=\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}+\sqrt{x-2}\)
\(=\sqrt{x+2}-\sqrt{x-2}+\sqrt{x-2}\)
\(=\sqrt{x+2}\)
Rút gọn biểu thức sau với x \(\ge\) 0
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
a) \(Q=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+2x\sqrt{x}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}\left(x>0,y>0\right)\)
Rút Gọn
b) \(M=\frac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right)x^2-\sqrt{6}}\)
Rút Gọn
1. Cho \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
a) Tìm ĐK xác định của A
B) Rút gọn
2. Cho \(B=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
a)Tìm ĐKXĐ của B
b)Rút gọn
c)Tìm x để A<2
Rút gọn biểu thức sau:
a)\(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
b)\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
Rút gọn biểu thức:
a) A=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
b) B=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)với \(x\ge2\)
Rút gọn biểu thức
A=\(\sqrt{x+2\sqrt{2x-4}+\sqrt{x-2\sqrt{2x-4}}}\)( với x >=2)
Rút gọn A
A=\(\dfrac{2x+4}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}\)
help
Rút gọn biểu thức:
1) \(\sqrt{9-4\sqrt{5}}+\sqrt{\left(25+1\right)^2}\)
2) \(\dfrac{x^2-5}{x+\sqrt{5}}\)
3) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
4) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)