\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)}{\sqrt{2}}=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
A =\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(A^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
\(A^2=\left(\sqrt{4-\sqrt{7}}\right)^2-2.\sqrt{4-\sqrt{7}}.\sqrt{4+\sqrt{7}}+\left(\sqrt{4+\sqrt{7}}\right)^2\)
\(A^2=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)
\(A^2=8-2\sqrt{16-7
}\)
\(A^2=8-2\sqrt{9}=8-6=2\)
\(A=\frac{+}{ }\sqrt{2}\)
Vì là biểu thức lên phải có tên . lên mới có A @@!