\(N=\dfrac{x+\sqrt{x}+2}{x+\sqrt{x}}-\dfrac{\sqrt{x}-1}{x+1}\) (ĐK: \(x>0\))
\(N=\dfrac{x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{x+1}\)
\(N=\dfrac{\left(x+\sqrt{x}+2\right)\left(x+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+1\right)}\)
\(N=\dfrac{x^2+x+x\sqrt{x}+\sqrt{x}+2x+2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{x\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+1\right)}\)
\(N=\dfrac{x^2+3x+x\sqrt{x}+\sqrt{x}+2-x\sqrt{x}+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+1\right)}\)
\(N=\dfrac{x^2+3x+2\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+1\right)}\)