a: \(\left(x^2-2x+2\right)\left(x^2+2x+2\right)\left(x-2\right)\left(x+2\right)\)
\(=\left[\left(x^2+2\right)^2-4x^2\right]\left(x^2-4\right)\)
\(=\left(x^3+2x\right)^2-4\left(x^2+2\right)^2-4x^4+16x^2\)
\(=x^6+4x^4+4x^2-4x^4+16x^2-4\left(x^4+4x^2+4\right)\)
\(=x^6+20x^2-4x^4-16x^2-16\)
\(=x^6-4x^4+4x^2-16\)
b: \(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)
\(=3x^3+6x-3x^3+3x\)
=9x
d: \(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+...+2+1\)
=5050