Ta có
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]
=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2
=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)
Ta có
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]
=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2
=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)
Rút gọn biểu thức A= 2/a-b+2/b-c+2/c-a+(a-b)^2+(b-c)^2+(c-a)^2/ (a-b)(b-c)c-a)
Rút gọn biểu thức:
(a+b+c)^2 + (b+c-a)^2 + (c+a-b)^2 + (a+b-c)^2
Rút gọn biểu thức:
(a+b+c)^2+(a-b-c)^2-(b-c-a)^2+c-a-b)^2
Bài 1: Cho a+b+c=0; rút gọn biểu thức A= a^2/(a^2-b^2-c^2) + b^2/(b^2-c^2-a^2) + c^2/(c^2-b^2-a^2)
Bài 2: Cho abc=2; rút gọn A= a/(ab+a+2) + b/(bc+b+1) + 2c/(ac+2c+2)
[a+b+c]^2+[a+b-c]^2-2[a+b]^2
Rút gọn biểu thức
Rút gọn biểu thức (a^2 + b^2 + c^2 ) - (a^2 - b^2 - c^2)^2
Rút gọn biểu thức (a^2 + b^2 + c^2 ) - (a^2 - b^2 - c^2)^2
Rút gọn biểu thức: A = (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2
Cho 3 số khác 0 a, b, c và a+b+c=0. Rút gọn biểu thức: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)