Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
rút gọn biểu thức
A = \(\dfrac{x+2}{\left|x^2-1\right|}+\dfrac{x^2}{x+1}\)
B = \(2x:\dfrac{1}{2}x+\left(x+1\right)^2\)
rút gọn biểu thức
A = \(\dfrac{x+2}{\left|x^2-1\right|}+\dfrac{x^2}{x+1}\)
B = \(2x:\dfrac{1}{2}x+\left(x+1\right)^2\)
rút gọn biểu thức
A = \(\dfrac{x+2}{\left|x^2-1\right|}+\dfrac{x^2}{x+1}\)
B = \(2x:\dfrac{1}{2}x+\left(x+1\right)^2\)
rút gọn biểu thức sau :
a. \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
b. \(B=7:\left(a+b\right)+8:\left(a-b\right)-16b:\left(a^2-b^2\right)\)
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
Rút gọn biểu thức:
1, \(B=\left(\dfrac{x.\sqrt{x}+x+\sqrt{x}}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}+3}{1-\sqrt{x}}\right).\dfrac{x-1}{2x+\sqrt{x}-1}\)với x>-0, x khác 1, x khác \(\dfrac{1}{4}\)
2, \(A=\dfrac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\) với x\(\ge\)0:x\(\ne\)0
Rút gọn biểu thức A = \(\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right):\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x+1}}\right)\) với \(x=\dfrac{a^2+b^2}{2ab}\)
Câu 1: Rút gọn các biểu thức sau:
a. \(\sqrt{36\left(x-5\right)^2}\) với x ≥ 5
b. \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}\) với x > 1
c. \(\sqrt{x^2\left(2x-4\right)^2}\) với a ≥ 2
d. \(\dfrac{1}{x}\sqrt{x^2\left(1+x\right)^2}\) với x < -1