`A =1 +2 + 2^2 + 2^3 + ... +2^20`
`=> 2A =2 + 2^2 + 2^3 + 2^4 + ....+ 2^21`
`=> 2A -A = (2+ 2^2 + ... + 2^21) - (1 + 2 + 2^2+..+2^20)`
`=> A = 2^21 -1`
Vậy `A = 2^21 -1`
2A = 2 + 22 + 23 + ... + 221
2A - A = 2 + 22 + 23 + ... + 221 - (1 + 2 + 23 + ... + 220)
A = (2 - 2) + (22 - 22) + ... + (220 - 220) -1 + 221
A = 221 - 1
Vậy A = 221 - 1
\(A=1+2+2^2+2^3+2^4+...+2^{19}+2^{20}\)
\(2A=2+2^2+2^3+2^4+2^5+...+2^{20}+2^{21}\)
\(2A-A=\left(2+2^2+2^3+2^4+2^5+...+2^{20}+2^{21}\right)-\left(1+2+2^2+2^3+2^{40}+...+2^{19}+2^{20}\right)\)
\(A=2^{21}-1\)
A = 1 + 2 + 22 + 23 + 24 + ... + 219 + 220
2A = 2. 1 + 2 . 2 + 22 . 2 + 23. 2 + 24. 2 + ... + 219.2 + 220.2
2A = 2 + 22 + 23 + 24 + 25 + ... + 220 + 221
2A - A =(2+22+ 23+ 24+ 25+...+ 220+221 )-(1+2 +22+ 23 + 24 + ...+2+2)
1A = 221 - 1
A = 221 - 1