A)\(\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}=\sqrt{5-2\sqrt{5}.2+4}+\sqrt{5+2\sqrt{5}.1+1}\)
=\(\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-2+\sqrt{5}+1=2\sqrt{5}-1\)
b)\(\sqrt{9-4\sqrt{2}}-\sqrt{11+6\sqrt{2}}=\sqrt{9-2.\sqrt{4}\sqrt{2}}-\sqrt{9+2.3\sqrt{2}+2}\)
=\(\sqrt{8-2\sqrt{8}+1}-\sqrt{9+2.3\sqrt{2}+2}=\sqrt{\left(\sqrt{8}-1\right)^2}-\sqrt{\left(3+\sqrt{2}\right)^2}\)
=\(\sqrt{8}-1-3-\sqrt{2}=\sqrt{8}-\sqrt{2}-4\)