a ) \(\left(2a+b\right)^2-\left(2a+b\right)\left(2a-b\right)-2a\left(b-a\right)\)
\(=4a^2+4ab+b^2-\left(4a^2-b^2\right)-2ab+2a^2\)
\(=4a^2+4ab+b^2-4a^2+b^2-2ab+2a^2\)
\(=2a^2+2ab+2b^2\)
\(=\left(a^2+2ab+b^2\right)+a^2+b^2\)
\(=\left(a+b\right)^2+a^2+b^2\)
b ) \(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left(a+b\right)^2-2\left(a+b\right)c+c^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left[\left(a+b\right)^2-\left(a+b\right)^2\right]+\left[2c\left(a+b\right)-2\left(a+b\right)c\right]+c^2\)
\(=c^2\)
\(\left(2a+b\right)^2-\left(2a+b\right)\left(2a-b\right)-2a\left(b-a\right)\)
\(=\left(2a+b\right)\left[\left(2a+b\right)-\left(2a-b\right)\right]-2a\left(b-a\right)\)
\(=2b\left(2a+b\right)-2a\left(b-a\right)\)
\(=4ab+2b^2-2ab+2a^2=2\left(a^2+ab+b^2\right)\)
\(\left(a+b-c\right)^2-\left(a+b\right)^2+2c\left(a+b\right)\)
\(=\left(a+b-c+a+b\right)\left(a+b-c-a-b\right)+2c\left(a+b\right)\)
\(=-c\left(2a+2b-c\right)+2c\left(a+b\right)=\)
\(-2c\left(a+b\right)+c^2+2c\left(a+b\right)=c^2\)